Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: covidwho-20233460

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. However, only a portion of patients respond to such treatments. Therefore, it remains a prevailing clinical need to identify factors associated with acquired resistance or lack of response to ICIs. We hypothesized that the immunosuppressive CD71+ erythroid cells (CECs) within the tumor and/or distant 'out-of-field' may impair antitumor response. METHODS: We studied 38 patients with cancer through a phase II clinical trial investigating the effects of oral valproate combined with avelumab (anti-programmed death-ligand 1 (PD-L1)) in virus-associated solid tumors (VASTs). We quantified the frequency/functionality of CECs in blood and biopsies of patients. Also, we established an animal model of melanoma (B16-F10) to investigate the possible effects of erythropoietin (EPO) treatment on anti-PD-L1 therapy. RESULTS: We found a substantial expansion of CECs in the blood of patients with VAST compared with healthy controls. We noted that the frequency of CECs in circulation was significantly higher at the baseline and throughout the study in non-responders versus responders to PD-L1 therapy. Moreover, we observed that CECs in a dose-dependent manner suppress effector functions of autologous T cells in vitro. The subpopulation of CD45+CECs appears to have a more robust immunosuppressive property compared with their CD45- counterparts. This was illustrated by a stronger expression of reactive oxygen species, PD-L1/PD-L2, and V-domain Ig suppressor of T-cell activation in this subpopulation. Lastly, we found a higher frequency of CECs in the blood circulation at the later cancer stage and their abundance was associated with anemia, and a poor response to immunotherapy. Finally, we report the expansion of CECs in the spleen and tumor microenvironment of mice with melanoma. We found that although CECs in tumor-bearing mice secret artemin, this was not the case for VAST-derived CECs in humans. Notably, our results imply that EPO, a frequently used drug for anemia treatment in patients with cancer, may promote the generation of CECs and subsequently abrogates the therapeutic effects of ICIs (eg, anti-PD-L1). CONCLUSIONS: Our results demonstrate that anemia by the expansion of CECs may enhance cancer progression. Notably, measuring the frequency of CECs may serve as a valuable biomarker to predict immunotherapy outcomes.


Subject(s)
Melanoma , T-Lymphocytes , Humans , Animals , Mice , T-Lymphocytes/pathology , Immunotherapy/methods , Erythroid Cells/pathology , Neoplasm Staging , Tumor Microenvironment
2.
Immune Netw ; 23(1): e10, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2254962

ABSTRACT

Memory T (Tm) cells protect against Ags that they have previously contacted with a fast and robust response. Therefore, developing long-lived Tm cells is a prime goal for many vaccines and therapies to treat human diseases. The remarkable characteristics of Tm cells have led scientists and clinicians to devise methods to make Tm cells more useful. Recently, Tm cells have been highlighted for their role in coronavirus disease 2019 vaccines during the ongoing global pandemic. The importance of Tm cells in cancer has been emerging. However, the precise characteristics and functions of Tm cells in these diseases are not completely understood. In this review, we summarize the known characteristics of Tm cells and their implications in the development of vaccines and immunotherapies for human diseases. In addition, we propose to exploit the beneficial characteristics of Tm cells to develop strategies for effective vaccines and overcome the obstacles of immunotherapy.

3.
Pathologe ; 42(Suppl 1): 89-97, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1971686

ABSTRACT

BACKGROUND: A dysregulated immune response is considered one of the major factors leading to severe COVID-19. Previously described mechanisms include the development of a cytokine storm, missing immunoglobulin class switch, antibody-mediated enhancement, and aberrant antigen presentation. OBJECTIVES: To understand the heterogeneity of immune response in COVID-19, a thorough investigation of histomorphological patterns in regional lymph nodes was performed. MATERIALS AND METHODS: Lymph nodes from the cervical, mediastinal, and hilar regions were extracted from autopsies of patients with lethal COVID-19 (n = 20). Histomorphological characteristics, SARS-CoV­2 qRT-PCR, and gene expression profiling on common genes involved in immunologic response were analyzed. RESULTS: Lymph nodes displayed moderate to severe capillary stasis and edema, an increased presence of extrafollicular plasmablasts, mild to moderate plasmacytosis, a dominant population of CD8+ T­cells, and CD11c/CD68+ histiocytosis with hemophagocytic activity. Out of 20 cases, 18 presented with hypoplastic or missing germinal centers with a decrease of follicular dendritic cells and follicular T­helper cells. A positive viral load was detected by qRT-PCR in 14 of 20 cases, yet immunohistochemistry for SARS-CoV-2 N-antigen revealed positivity in sinus histiocytes of only one case. Gene expression analysis revealed an increased expression of STAT1, CD163, granzyme B, CD8A, MZB1, and PAK1, as well as CXCL9. CONCLUSIONS: Taken together, our findings imply a dysregulated immune response in lethal COVID-19. The absence/hypoplasia of germinal centers and increased presence of plasmablasts implies a transient B­cell response, implying an impaired development of long-term immunity against SARS-CoV­2 in such occasions.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , Lymph Nodes , SARS-CoV-2
4.
Pathology ; 54(4): 404-408, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1536980

ABSTRACT

Despite millions of PCR confirmed cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, the long-term pathophysiological changes induced by this infection in the lungs and their relationship with possible immune triggers remain incompletely understood. Acute respiratory distress syndrome and subsequent respiratory failure are the most common causes of mortality in hospitalised patients. Severe lung tissue destruction can be due to an overactive immune system that far exceeds the harm that would have been caused by direct virus replication. This study extends our previous investigation and presents detailed histopathological findings on cryotransbronchial biopsy in patients with persistent (range 31-182 days) pneumonitis and severe interstitial inflammatory infiltration in the lungs due to SARS-CoV-2 infection. We describe a novel lung injury pattern associated with SARS-CoV-2 pneumonitis, which manifests as a marked interstitial CD8-positive T-cell lymphocytic infiltration. These findings provide a better understanding of the changes in the lungs that ensue due to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Pneumonia , CD8-Positive T-Lymphocytes , Humans , Lung/pathology , Pneumonia/pathology , SARS-CoV-2
5.
Rev Med Inst Mex Seguro Soc ; 58(Supl 2): S312-315, 2020 09 21.
Article in Spanish | MEDLINE | ID: covidwho-1485716

ABSTRACT

T lymphocytes (or T cells) are characterized by having an essential role in the control of acute viral infections. SARS-CoV-2 infection is an acute viral infection that mainly affects the respiratory tract causing COVID-19 disease, which presents with mild, moderate and critical symptoms that can lead to the death of the patient. The induction of populations of CD4+ and CD8+ T cell with a functional memory phenotype could be decisive in the control of viral replication and therefore be determinants in the course of the disease. In this opinion article, we will review the reported evidence regarding the presence, phenotype, and function of circulating T cell populations and the site of infection to understand their possible role in controlling viral replication, in the severity of the disease, and the importance of T-cell-mediated protection in the development of vaccines against SARS-CoV-2 infection.


Los linfocitos T se caracterizan por tener un papel esencial en el control de infecciones virales agudas. La infección por SARS-CoV-2 es una infección viral aguda que afecta principalmente el tracto respiratorio y causa la enfermedad COVID-19, la cual cursa con síntomas leves, moderados y críticos que pueden llevar a la muerte del paciente. La inducción de poblaciones de linfocitos T CD4+ y CD8+ con fenotipos de memoria funcionales podrían ser esenciales en el control de la replicación viral y, por lo tanto, determinantes en el curso de la enfermedad. En este artículo de opinión revisaremos las evidencias reportadas en cuanto a la presencia, fenotipo y función de las poblaciones de linfocitos T en circulación y en el sitio de infección para entender su posible papel en el control de la replicación viral, en la severidad de la enfermedad y la importancia de la protección mediada por linfocitos T en el desarrollo de vacunas contra la infección por SARS-CoV-2.

6.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: covidwho-1317007

ABSTRACT

BACKGROUND: Adenoviral vectors emerged as important platforms for cancer immunotherapy. Vaccination with adenoviral vectors is promising in this respect, however, their specific mechanisms of action are not fully understood. Here, we assessed the development and maintenance of vaccine-induced tumor-specific CD8+ T cells elicited upon immunization with adenoviral vectors. METHODS: Adenoviral vaccine vectors encoding the full-length E7 protein from human papilloma virus (HPV) or the immunodominant epitope from E7 were generated, and mice were immunized intravenously with different quantities (107, 108 or 109 infectious units). The magnitude, kinetics and tumor protection capacity of the induced vaccine-specific T cell responses were evaluated. RESULTS: The adenoviral vaccines elicited inflationary E7-specific memory CD8+ T cell responses in a dose-dependent manner. The magnitude of these vaccine-specific CD8+ T cells in the circulation related to the development of E7-specific CD8+ tissue-resident memory T (TRM) cells, which were maintained for months in multiple tissues after vaccination. The vaccine-specific CD8+ T cell responses conferred long-term protection against HPV-induced carcinomas in the skin and liver, and this protection required the induction and accumulation of CD8+ TRM cells. Moreover, the formation of CD8+ TRM cells could be enhanced by temporal targeting CD80/CD86 costimulatory interactions via CTLA-4 blockade early after immunization. CONCLUSIONS: Together, these data show that adenoviral vector-induced CD8+ T cell inflation promotes protective TRM cell populations, and this can be enhanced by targeting CTLA-4.


Subject(s)
Cancer Vaccines/immunology , Immunologic Memory/immunology , Immunotherapy/methods , Neoplasms/drug therapy , Animals , Humans , Mice , Neoplasms/immunology
7.
Pathologe ; 42(2): 188-196, 2021 Mar.
Article in German | MEDLINE | ID: covidwho-1081955

ABSTRACT

BACKGROUND: A dysregulated immune response is considered one of the major factors leading to severe COVID-19. Previously described mechanisms include the development of a cytokine storm, missing immunoglobulin class switch, antibody-mediated enhancement, and aberrant antigen presentation. OBJECTIVES: To understand the heterogeneity of immune response in COVID-19, a thorough investigation of histomorphological patterns in regional lymph nodes was performed. MATERIALS AND METHODS: Lymph nodes from the cervical, mediastinal, and hilar regions were extracted from autopsies of patients with lethal COVID-19 (n = 20). Histomorphological characteristics, SARS-CoV­2 qRT-PCR, and gene expression profiling on common genes involved in immunologic response were analyzed. RESULTS: Lymph nodes displayed moderate to severe capillary stasis and edema, an increased presence of extrafollicular plasmablasts, mild to moderate plasmacytosis, a dominant population of CD8+ T­cells, and CD11c/CD68+ histiocytosis with hemophagocytic activity. Out of 20 cases, 18 presented with hypoplastic or missing germinal centers with a decrease of follicular dendritic cells and follicular T­helper cells. A positive viral load was detected by qRT-PCR in 14 of 20 cases, yet immunohistochemistry for SARS-CoV-2 N-antigen revealed positivity in sinus histiocytes of only one case. Gene expression analysis revealed an increased expression of STAT1, CD163, granzyme B, CD8A, MZB1, and PAK1, as well as CXCL9. CONCLUSIONS: Taken together, our findings imply a dysregulated immune response in lethal COVID-19. The absence/hypoplasia of germinal centers and increased presence of plasmablasts implies a transient B­cell response, implying an impaired development of long-term immunity against SARS-CoV­2 in such occasions.


Subject(s)
COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , Lymph Nodes , SARS-CoV-2
8.
Pathol Res Pract ; 220: 153380, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1080535

ABSTRACT

As of October 2020, there are over 40 million confirmed cases, and more than 1 million confirmed deaths of Covid-19 worldwide. The main cause of death in hospitalized patients is a respiratory failure due to acute respiratory distress syndrome. It has been suggested that the very intense immune response induces diffuse alveolar damage that far exceeds the harm that would have been caused by virus replication per se, resulting in lethal tissue destruction. We present a detailed report of the histopathological findings on cryo transbronchial biopsy in the patient with persistent (3 months) interstitial pneumonitis and severe CD8 positive cell infiltration in the lungs due to SARS-CoV-2 infection. CD8 positive T-lymphocytes have a great potential to damage tissue either through direct cytotoxicity or through cytokines release.


Subject(s)
COVID-19/immunology , COVID-19/pathology , T-Lymphocytes, Cytotoxic/immunology , Fatal Outcome , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Lung/pathology , Male , Middle Aged , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL